2023

6th Semester Examination MATHEMATICS (Honours)

Paper: C 13-T

[Metric Spaces and Complex Analysis]

[CBCS]

Full Marks: 60

Time: Three Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Group - A

Answer any ten questions:

2×10=20

- 1. State the Banach fixed point theorem.
- 2. What do you mean by complete metric space?
- 3. Define uniform continuity.
- 4. Write down the Heine-Borel property.
- 5. Let (X, d) be a metric space in which A and B are two intersecting connected sets. Show that $A \cup B$ is connected.

6. Let
$$f(z) = \frac{|z|}{\text{Re}(z)}$$
 if $\text{Re}(z) \neq 0$
= 0 if $\text{Re}(z) = 0$

Show that f(z) is not continuous at z = 0.

- 7. Show that the function $u = \cos x \cosh y$ is harmonic.
- 8. Find the radius of convergence $\sum_{n=2}^{\infty} \frac{z^n}{n \cdot (\log n)^2}$.
- 9. Evaluate $\oint_c \frac{1}{z} dz$, $x = \cos t$, $y = \sin t$, $0 \le t \le 2\pi$.
- 10. Show that $u(x, y) = 4xy x^3 + 3xy^2$, is harmonic.
- 11. Show that a convergent sequence in a metric space is bounded.
- 12. Give an example, in the real time \mathbb{R} , of the sequence $\{x_n\}$ such that $|x_n x_{n+1}| \to 0$ (as $n \to \infty$) but $\{x_n\}$ is not Cauchy.
- 13. Show that for any subset A of a metric space (X, d), the function $f: X \to \mathbb{R}$ given by f(x) = d(x, A), $x \in X$, is uniformly continuous.
- 14. Show that $\lim_{z \to z_0} f(z)g(z) = 0$ if $\lim_{z \to z_0} f(z) = 0$ and if there exists a positive integer M such that $|g(z)| \le M$ for all z in some neighbourhood of z_0 .

15. Let $T(z) = \frac{az+b}{cz+d}$ be a bilinear transformation. Show that ∞ is a fixed point of T if and only if c = 0.

Group - B

Answer any *four* questions : $5 \times 4 = 20$

- 16. Show that continuous image of a compact metric space is compact.
- 17. Check whether the function is differentiable at z = 0. Also check whether it satisfies C-R equations.

$$f(z) = \frac{x^2 y^5 (x+iy)}{x^4 + y^{10}} \quad (z \neq 0)$$

= 0 \quad (z = 0)

18. If f(z) is an alytic function within and on a closed contour C, and if a is any point within C, then show that

$$f(a) = \frac{1}{2\pi i} \int_{C} \frac{f(z)}{z - a} dz.$$

- 19. (i) Prove that a metric space (X, d) having the property that every continuous map $f: X \to X$ has a fixed point, is connected.
 - (ii) Let (X, d) be a complete metric space and $T: X \to X$ be a contraction on X. Then for $x \in X$, show that the sequence $\{T^n(x)\}$ is a convergent sequence.

- 20. (i) Determine whether the set $S = \{(x, y): 0 < x \le 1, x^2 + y^2 = 4\}$ is compact in \mathbb{R}^2 .
 - (ii) Let X be an infinite set endowed with the discrete metric. Show that every infinite subset of (X, d) is bounded but not totally bounded.

21. Evaluate:

1

1

1

1.

14

- (i) $\int_{C} \frac{\sin(\pi z^{2}) + \cos(\pi z^{2})}{(z-1)(z-2)} dz$ where C is the circle |z| = 3 described in the positive sence.
- (ii) $\int_{C} \frac{zdz}{(9-z^2)(z+i)}$ where C is the circle |z|=2 described in the positive sence.

Group - C

Answer any *two* questions: $10 \times 2 = 20$

- 22. (i) State and prove Liouville's theorem.
 - (ii) If f(z) is a regular analytic function of z, prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = 4 |f'(z)|^2.$
- 23. (i) Show that any compact subset of a metric space is closed and bounded.
 - (ii) Show that two metrics d_1 , d_2 on a set X are equivalent iff the identity map $I_X:(X,d_1) \to (X,d_2)$ is a homomorphism.

- 24. (i) Show that the map $f:[0,1] \rightarrow [0,1]$, defined by $f(x) = x \frac{x^2}{2}, x \in [0,1] \text{ is a weak contraction}$ but not a contraction map.
 - (ii) Let (X, d) be a complete metric space and $f: X \to X$ be a contraction map with Lipschitz constant $t \ (0 < t < 1)$. If $x_0 \in X$ is the unique fixed point of f, show that $d(x, x_0) \le \frac{1}{1-t} d(x, f(x))$, for all $x \in X$.
 - (iii) Show that a contraction of a bounded plane set may have the same diameter as the set itself. 2
- 25. (i) Let f(z) = u(x, y) + iv(x, y), z = x + iy and $z_0 = x_0 + iy_0$. Let the function f be defined in a domain D except possibly at the point z_0 in D. Then prove that $\lim_{z \to t_0} f(z) = u_0 + iv_0$ if and only if $\lim_{x \to x_0} u(x, y) = u_0$ and $\lim_{y \to y_0} v(x, y) = v_0$.
 - (ii) Show that when 0 < |z| < 4,

$$\frac{1}{4z-z^2} = \frac{1}{4z} + \sum_{n=0}^{\infty} \frac{z^n}{4^{n+2}}.$$