2023

6th Semester Examination PHYSICS (Honours)

Paper: C 14-T

[Statistical Mechanics] is 8 restore a di

[CBCS]

Full Marks: 40 Time: Two Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Group - A

Answer any five questions: $2 \times 5 = 10$

- 1. Show that electron gas in a white dwarf star is strongly degenerate and relativistic in nature.
- 2. Write statistical definition of temperature in terms of accessible microstates. Assuming the number of accessible microstates $\Omega(E,V)\alpha(V^NE^{\frac{3N}{2}})$, molar specific heat at constant volume.
- 3. Which among the Bose-Einstein and Fermi-Dirac statistics will be followed by (i) Neutrons, (ii) Alpha particles, (iii) Deuterium nuclei, and (iv) , He3 atoms? 2

P.T.O.

where a and n are constants, g_s is spin degeneracy and V is the volume. Calculate the Fermi energy and total energy of the system at zero Kelvin temperature.

- 13. The specific heat of a metal (in three dimensions) at low temperatures can be represented by $C_v = aT + bT^3$, where a and b are constants. Explain the origin of the first term with necessary deduction.
- 14. Starting from Planck's law deduce (i) Rayleigh-Jeans law and (ii) Wien's law. $2\frac{1}{2}+2\frac{1}{2}$

Group - C

Answer any *one* question : $10 \times 1 = 10$

- 15. (a) Calculate deviation of an ideal Fermi gas equation from the perfect gas equation for weak degeneracy.

 How is it related to gas degeneracy?

 5+2
 - (b) An atom has a non-degenerate ground state with energy $\varepsilon_0 = 0$ and a doubly degenerate excited state with energy $\varepsilon_1 = \varepsilon$. Calculate the specific heat at very low temperature ($\beta \varepsilon >> 1$).
- 16. Write down the single particle partition function for a system having two non-degenerate energy levels with energies: $\varepsilon_1 = -\mu H$ and $\varepsilon_2 = \mu H$. Evaluate entropy for this system. Hence discuss the concept of negative absolute temperature of such a two-level system.

4+4+2

where a and n are constants, g_s is spin degeneracy and V is the volume. Calculate the Fermi energy and total energy of the system at zero Kelvin temperature.

- 13. The specific heat of a metal (in three dimensions) at low temperatures can be represented by $C_V = aT + bT^3$, where a and b are constants. Explain the origin of the first term with necessary deduction.
- 14. Starting from Planck's law deduce (i) Rayleigh-Jeans law and (ii) Wien's law. 2½+2½

Group - C

Answer any *one* question: $10 \times 1 = 10$

- 15. (a) Calculate deviation of an ideal Fermi gas equation from the perfect gas equation for weak degeneracy.

 How is it related to gas degeneracy?

 5+2
 - (b) An atom has a non-degenerate ground state with energy $\varepsilon_0 = 0$ and a doubly degenerate excited state with energy $\varepsilon_1 = \varepsilon$. Calculate the specific heat at very low temperature ($\beta \varepsilon >> 1$).
- 16. Write down the single particle partition function for a system having two non-degenerate energy levels with energies: $\varepsilon_1 = -\mu H$ and $\varepsilon_2 = \mu H$. Evaluate entropy for this system. Hence discuss the concept of negative absolute temperature of such a two-level system.

4+4+2