2023

6th Semester Examination PHYSICS (Honours)

Paper: C 13-T

[Electromagnetic Theory]

[CBCS]

Full Marks: 40

Time: Two Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Answer any *five* questions from Q.1-Q.-8.

 $2 \times 5 = 10$

- 1. The space-time dependence of the electric field of a linearly polarized light in free space is given by $\vec{E} = E_0 \cos(\omega t - kz)\hat{i}$, where E_0 , ω and k are the amplitude, the angular frequency and the wave vector, respectively, Find the time average energy density associated with the electric field.
- 2. How is the wave vector of an incident electromagnetic wave modified for the propagation of the wave through a conducting medium? What is its consequence?
- 3. What do you mean by gauge transformation?

P.T.O.

- 4. What do you mean by Phase Retardation plates?
- 5. If the vector potential $\vec{A} = ax\hat{i} + 2y\hat{j} 3z\hat{k}$, satisfies the Coulomb gauge, find the value of the constant α .
- 6. What is birefringence? Give some of its application in display devices.
- 7. A uniform volume charge density is placed inside a conductor (with resistivity $10^{-2} \Omega m$). Calculate the time when the charge density reduces to (1/e) time of its initial value.
- 8. Explain why only a thin coating of gold is sufficient to manufacture a highly conducting wire.

Answer any four questions from Q.9-Q.14.

 $5 \times 4 = 20$

- 9. A dilute electron gas with free electron concentration N is subjected to a simple harmonic electric field of angular frequency ω .
 - (a) Determine the velocity of an electron.
 - (b) Derive the expressions of the conduction current density and displacement current density.
 - (c) Show that the effective dielectric constant of the electron gas is $1 \left(Ne^2 / m\epsilon_0 \omega^2\right)$. 1+2+2 [Symbols have their usual significance]
- 10. (a) Write the physical significance of the Poynting

vector. What is the relation between the Poynting vector, electromagnetic energy density, and phase velocity?

1+1

- (b) Show that the time averaged electric and magnetic energy densities in vacuum are equal. 3
- 11. (a) What do you mean by linearly polarized, circularly polarized, and elliptically polarized waves? Give the expression for the \vec{E} field in each case. 2+2
 - (b) Show that TEM waves cannot occur in a waveguide.
- 12. (a) Consider a rectangular waveguide with the dimensions a = 3.33 cm and b = 2.50 cm. For the propagation of the TE_{11} mode find the range of frequencies. Which kind of filter does this waveguide behave like in this case? 2+1
 - (b) A step-index fiber has a core index of refraction of $n_1 = 1.425$. The cut-off angle for light entering the fiber from air is found to be 8.50°. What is the numerical aperture of the fiber? What is the index of refraction of the cladding of this fiber?

1+1

13. (a) Derive, considering TE waves, the expressions of the cut-off wavelength and guide wavelength for propagation of an electromagnetic wave between parallel plates.

- (b) Show that $v_p g_g = c^2$ where v_p and v_g are the phase and group velocities, respectively, and c is the velocity of light.
- 14. Show that normal component of electric displacement vector is not continuous at the boundary. How does birefringence explain double refraction? 3+2

Answer any one question from Q.15-Q.16.

 $10 \times 1 = 10$

- 15. (a) What is Babinet's compensator? Explain how it can be used to analyse elliptically polarized light. 1+3
 - (b) What are Biot's laws for rotatory polarization?

 Define specific rotation of a solution. 2+1
 - (c) A TEM wave of frequency 300 GHz propagates in vacuum along the positive *x*-direction. It has an electric field of amplitude 28.28 V/m. The wave is linearly polarized with the plane of vibration of the electric field at an angle of 45° to the *xz*-plane. Give the expressions of the electric and magnetic fields.
- 16. (a) What are the *s*-polarization and *p*-polarization of electromagnetic waves?
 - (b) Deduce the expressions of amplitude coefficients for reflection and transmission for a *p*-polarized electromagnetic wave and discuss their variations.

- (c) How is the concept of Brewster's angle explained for *p*-polarized wave in specific conditions? Show diagrammatically.
- (d) Find the reflectance and the transmittance of a plane electromagnetic wave incident normally from air on a dielectric surface of refractive index 1.4.

2