Total Pages: 11

B.Sc./4th Sem (H)/PHYS/23(CBCS)

2023

4th Semester Examination PHYSICS (Honours)

Paper : GE 4-T

[CBCS]

Full Marks: 40

Time: Two Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

[Electricity and Magnetism]

Group - A

Answer any five of the following questions:

 $2 \times 5 = 10$

- 1. If unit vectors \hat{a} and \hat{b} are inclined at an angle θ then prove that $\left| \hat{a} \hat{b} \right| = 2\sin\left(\frac{\theta}{2}\right)$.
- 2. Discuss the nature of electric field due to a charge that suddenly starts and stops moving.
- 3. The electric potential in a given space is represented by

V = 3x + 5y - 6z. Show that electric field intensity is uniform everywhere in the space.

- 4. What is an electric dipole? Write down the expression for the moment on an electric dipole.
- 5. The magnetic flux through a circular loop is $0.033t^3$ weber. What is the induced emf in the loop in 1 second?
- 6. State and explain the Ampere's circuital law.
- 7. What is the value of $\vec{\nabla} \cdot \vec{B}$ and $\vec{\nabla} \times \vec{B}$ for point inside a current loop?
- 8. What is the significance of non-diverging \vec{J} ? Write down the equation of continuity for steady state current.

Group - B

Answer any *four* of the following questions: $5 \times 4 = 20$

- 9. Calculate the electric field at a point due to an infinite plane sheet of charge by using Gauss's law.
- 10. Find the expression for capacitance of a cylindrical capacitor.5
- 11. Consider the magnetic field produced by a long straight wire carrying current *I*, at a point *P* at a distance *r* from it. Calculate the length of the current carrying conductor that contributes 90% of the total field at *P*.
- 12. Differentiate between dia, para and ferro magnetic substances. Give the domain theory of ferromagnetism.

- 13. State Faraday's laws of electromagnetic induction. Express it in integral and differential forms. A circular coil of a single turn of thin conducting wire has self-inductance *L*. If the number of turns is increased to 8, then calculate the new self-inductance. 2+1+2
- 14. State Poynting vector and prove Poynting theorem. 2+3

Group - C

Answer any one of the following questions:

 $10 \times 1 = 10$

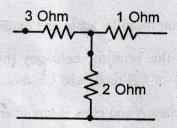
- 15. (a) A circular wire of radius a has linear charge density $\lambda = \lambda_0 \cos^2 \theta$, θ is the angle with respect a fixed radius. Calculate the (i) total charge and (ii) potential and electric field at the centre.
 - (b) An electric dipole of moment \vec{p} is placed in a uniform electric field \vec{E} . Show that its potential energy is $-\vec{p}.\vec{E}$.
- (a) State and explain Biot-Savart law in vector form.
 Using this law calculate magnetic field at the axis of a solenoid.
 - (b) Give the integral form of Maxwell's equation and give their physical significances.
 - (c) Write two characteristics of electromagnetic wave. (2+4)+3+1

OR

[Digital, Analog Circuits and Instrumentation] Group - A

Answer any *five* of the following: $2 \times 5 = 10$

- 1. Convert decimal number 38 to binary number.
- 2. State De Morgan's theorem.
- 3. Do the binary subtraction using 2's complement method: 1101 1011.
- 4. What do you mean by static and dynamic resistance?
- 5. Establish the relation between the current gains $(\alpha \text{ and } \beta)$ of CB mode and CE mode n-p-n transistor.
- 6. What are class A and class B amplifiers?
- 7. What do you mean by CMRR in op-amp?
- 8. What is the position of Fermi level in case of *p* and *n*-type semiconductor? Explain it through band diagram.


Group - B

Answer any *four* of the following: $5 \times 4 = 20$

- 9. (a) Verify the Boolean Expression A + BC = (A + B) (A + C).
 - (b) Design a two-input XOR gate exclusively with the help of NAND gates. 2+3

- 10. Explain the operation of AND gate using transistor. 5
- 11. Simplify the Boolean function using K-map $F(A, B, C, D) = \Sigma(0,1,2,4,5,6,8,9,12,13,14)$.
- 12. Draw the circuit diagram of the CE mode npn transistor. Draw and explain its output characteristic. Why is the current increased slightly in the saturation region of the transistor?

 1+3+1
- 13. (a) Find the values of the h parameters of the given circuit

(b) Write down one advantage of the h-parameters.

4+1

14. Establish the output expression of voltage for inverting adder in terms of input voltage using op-amp. What do you mean by virtual ground?
4+1

Group - C

Answer any *one* of the following: $10 \times 1 = 10$

15. Explain the operation of Zener diode and draw the I-V characteristic. Determine its ripple factor. What is the basic use of Zener diode?

4+4+2

- 16. (a) Calculate the ripple factor for half wave and full wave rectifier considering the load current is a sinusoidal wave.
 - (b) Express the output voltage in terms of input voltage in case of a differentiator OPAMP circuit.
 - (c) If v_1 and v_2 are two voltages (with respect to ground), how would you construct an OPAMP circuit to get the output voltage $v_0 = 2v_1 v_2$?

 4+3+3

বঙ্গানুবাদ

বিভাগ - ক

নীচের ,যেকোনো পাঁচটি প্রশ্নের উত্তর দাও। ২×৫=১০

- ১। দশমিক সংখ্যা 38-কে বাইনারি সংখ্যায় রূপান্তর কর।
- ২। ডি মরগ্যানের উপপাদ্যটি বিবৃত কর।
- ত। 2's কমপ্লিমেন্ট পদ্ধতিতে বাইনারি বিয়োগ কর: 1101 1011।
- ৪। স্থির এবং গতিশীল রেসিস্টেন্স বলতে কি বোঝ?
- ৫। CB মোড এবং CE মোড n-p-n ট্রানজিস্টরের প্রবাহমাত্রার বিবর্ধন (α এবং β) মধ্যে সম্পর্ক স্থাপন কর।
- ৬। ক্লাস A এবং ক্লাস B এ্যামপ্লিফায়ার কী?
- ৭। অপ-অ্যাম্পে CMRR বলতে কী বোঝ?