2023

4th Semester Examination PHYSICS (Honours)

Paper: C 9-T

[Elements of Modern Physics]

[CBCS]

Full Marks: 40

Time: Two Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Group - A

Answer any *five* of the following: $2 \times 5 = 10$

- 1. Write the expression for the de Broglie wavelength associated with a charged particle having charge 'q' and mass 'm', when it is accelerated by a potential V. 2
- 2. How does the light from a torch differ from that of a LASER, although both can be equally intense and of same colour.
- 3. An X-ray tube operates at 30 kV. Calculate the shortest wavelength of the emitted X-rays.

- 4. If $\hat{\alpha}$ is a non-Hermitian operator then show that $(\hat{\alpha} + \hat{\alpha}^{\dagger})$ is Hermitian.
- 5. State and explain Ehrenfest's theorem. 2
- 6. Define binding energy and packing fraction of nuclei.

1 + 1

- 7. The half-life of UX_1 is 24.1 days. After the isolation of UX_1 , how many days are required for 90% of it to be converted to UX_2 ?
- 8. Calculate the normalization constant for a wave function given by (at t = 0) $\psi(x) = A \exp(-\sigma^2 x^2/2) \exp(ikx)$.

2

Group - B

Answer any *four* of the following: $5 \times 4 = 20$

- 9. An electron is observed by scattering a beam of protons from it in a so-called proton microscope. If the electron is initially at rest, show that the smallest distance within which it can be localized is equal to $(M_p/4m_e)(\lambda_p/2\pi)$, where λ_p is the de Broglie wavelength of the proton.
- 10. Explain the need for a wave equation to describe the behaviour of a quantum system. Starting from de Broglie's hypothesis, set up one-dimensional Schrödinger wave equation for a free particle. How is

it modified if the particle is under the influence of a potential field? 2+2+1

- 11. A particle in the infinite square well has the initial wave function $\psi(x, 0) = Ax(a-x)$, $(0 \le x \le a)$, for some constant A. Outside the well the wave function is zero. Find $\psi(x, t)$.
- 12. Define the decay constant λ of a radioactive material. Hence obtain an expression for the number of radioactive atoms at time t, given that their initial number was N_0 . Explain half-life and mean life of radioactive material. 1+2+2
- 13. Obtain an expression for the binding energy and mass of a nucleus in the ground state on the basis of semi-empirical mass formula of Weizsacker. 3+2
- 14. Describe briefly the working of a ruby laser and state how population inversion has been achieved in this device. 2+3

Group - C

Answer any *one* of the following: $10 \times 1 = 10$

15. (a) Prove that the expression for the one-dimensional probability current density is

$$j_{x} = \frac{i\hbar}{2m} \left(\psi \frac{\partial \psi^{*}}{\partial x} - \psi^{*} \frac{\partial \psi}{\partial x} \right).$$

- (b) The mass of the hydrogen atom and of neutron are 1.008142 and 1.008982 amu respectively. Calculate the packing fraction and binding energy per nucleon of ¹⁶O nucleus.
- (c) What do you mean by nuclear fission and chain reaction? 5+(1.5+1.5)+(1+1)
- 16. (a) Explain Geiger-Nuttal law relating to the ranges of α -particles in α -ray disintegrations and the value of half-life.
 - (b) A free neutron decays into a proton, an electron and an antineutrino. If $M(n) = 1.00898 \ u$, $M(p) = 1.00759 \ u$ and $M(e) = 0.00055 \ u$, find the kinetic energy shared by the electron and the antineutrino.
 - (c) Prove that the expectation value of energy in the eigenstate $\psi_n = u_n(\mathbf{r}) \exp(-iE_n t/\hbar)$ is certainly E_n , where $u_n(\mathbf{r})$ is normalized. 5+3+2

the the bound is seen at the popular popular