2022

5th Semester Examination

MATHEMATICS (Honours)

Paper: DSE 2-T

[CBCS]

Full Marks: 60 Time: Three Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

[Probability and Statistics]

Group - A

1. Answer any ten questions:

2×10=20

- (a) A freshman class at a college has 200 students of which 150 are women and 50 are majoring in maths, and 25 maths major are women. If a student is selected at random from the freshman class, what is the probability that the student will be either a mathematics major or a women?
- (b) A speaks the truth in 75% cases and B in 80% cases. In what percentage of cases are they likely to contradict each other in stating the same fact?

P.T.O.

- (c) Write the pdf of Gamma distribution and its mean and variance.
- (d) Find E(X) for the following density function:

$$f(x) = \begin{cases} \frac{4x}{5}, & 0 < x \le 1\\ \frac{2}{5}(3-x), & 1 < x \le 2\\ 0, & elsewhere \end{cases}$$

- (e) Accidents take place in a factory at a rate of 6 per year. What is the probability that there is no accident in a given month?
- (f) X, Y, Z are three random variables, with $\sigma_x = 2$, $\sigma_y = 1$ and $\sigma_z = 3$; $\rho_{xy} = 0.3$, $\rho_{yz} = 0.5$ and $\rho_{zx} = 0.5$. Find the variance of U = X + Y Z.
- (g) If the lines of regression of y on x and x on y are 3x + 2y = 26 and 6x + y = 31, respectively. Find the correlation coefficient between x and y.
- (h) Let U and V be two random variables with E(U) = 0 = E(V), var(U) = var(V) = 1. Then prove that $-1 \le E(UV) \le 1$.
 - (i) State weak and strong law of large numbers.
 - (j) Let $X = (X_1, X_2, \dots, X_{54})$ be a random sample from a discrete distribution with pmf $p(x) = \frac{1}{3}$,

x = 2, 4, 6. Find the probability distribution of sample mean \overline{X} using central limit theorem.

- (k) Let X_1, X_2, \dots, X_n be independent and identically $N(\mu, \sigma^2)$ distributed. Find method of moment estimator of μ , σ^2 .
- (l) The bivariate random variable (X, Y) jointly follow the probability density function

$$f(x,y) = \begin{cases} kx^2(8-y), & x < y < 2x, 0 \le x \le 2\\ 0, & elsewhere. \end{cases}$$

Find the k.

- (m) Let X_1, X_2, \dots, X_n be a random sample from $N(\mu, \sigma^2)$. Find the sampling distribution of $W = \sum_{i=1}^n \left(\frac{X_i \mu}{\sigma}\right)^2.$
- (n) Let X be a random variable follows N(800,144) distribution. Find P(X < 772). Given that P(Z < 2.33) = 0.0099, where Z follows standard normal distribution.
- (o) Define Markov chain with an example.

Group - B

2. Answer any four questions:

5×4=20

- (a) Let $X \sim Bin(n, p)$ and $Y = \frac{X np}{\sqrt{npq}}$. Prove that the distribution of Y converges to N(0, 1) as $n \to \infty$ (not using Central limit theorem).
- (b) State and prove Chapman-Kolmogorov equation.
- (c) Let X_1, X_2, \dots, X_n be independent and identically $N(\mu, \sigma^2)$ distributed. Find method of moment estimator of μ , σ^2 by calculating raw moments.
- (d) Find the value of k so that the following table may represent a joint distribution

J. Sign	Y=1	Y=2
X = 1	0.4	0.1
X = 2	k	0.3

Find conditional distribution of X given Y = y and also find conditional expectation of X given Y = y.

(e) A die is thrown 3600 times, show that the probability that the number of sixes lies between 550 and 650 is at least 4/5 (use Chebyshev's inequality).

(f) Bearings made from a certain process have a mean diameter 0.0566 cm and a standard deviation 0.004 cm. Assuming that the data may be looked upon as a random sample from a normal population, construct a 95% confidence interval for the actual average diameter of bearings made by the process. Given that P(t > 2.262) = 0.025 with 9 degrees of freedom and P(t > 2.228) = 0.025 with 10 degrees of freedom.

Group - C

3. Answer any two questions:

 $10 \times 2 = 20$

- (a) (i) What is called likelihood function?
 - (ii) Let $X_1, X_2, \dots, X_n \sim U(a, b)$. Find maximum likelihood estimators of a and b.
 - (iii) A random sample of size 25 is taken from a Poisson distribution with the parameter λ . If the sum of all observations is 150, what is the method of moment estimate of λ ? 2+3+5
- (b) Following are the mileages recorded (km per litre of petrol) in 16 runs of a new model of car: 22.16, 22.37, 22.50, 22.04, 22.25, 23.01, 22.81, 22.63, 23.18, 22.55, 22.75, 22.95, 22.50, 22.38, 23, 22.17.

Assuming the mileage follows a normal distribution with mean μ and variance σ^2 , test the hypotheses

- (i) $H: \mu = 22.5$ vs. $H_1: \mu \neq 22.5$ and
- (ii) $H:\sigma^2 \le 0.3$ vs. $H_1:\sigma^2 > 0.3$.

Take level of significance 0.05.

Given that $t_{0.025, 15} = 2.131$, $t_{0.05, 15} = 1.753$, $\chi^2_{0.05, 15} = 24.996$, $\chi^2_{0.025, 15} = 27.488$, choose the appropriate. 5+5

- (c) The joint density function of (X, Y) is given by $f(x,y) = \begin{cases} 10xy^2, 0 < x < y < 1 \\ 0, & elsewhere \end{cases}$. Find the marginal and conditional probability density functions of X and Y. Also find $\mu_X, \mu_Y, \sigma_X^2, \sigma_Y^2$, $\operatorname{cov}(X,Y)$ and $\operatorname{p}(X,Y)$.
- (d) (i) Let F(x) be the distribution function of a continuous random variable X. Show that the expectation of X can be expressed as $E(X) = \int_{x=0}^{\infty} \{1 F(x) F(-x)\} dx.$
 - (ii) For any random variable X (discrete or continuous) and for any real number c, prove

No a A The Englished Found Charles and Al Carrier

Could be a second of the second

the Proventing wear of middle and an induce with more

Land to the country of the second second

that $E(|X-c|) \ge E(|X-\mu|)$ provided the expectations exist and μ is the median of X.

(iii) If X is $\gamma(l)$ variate, then compute $E(\sqrt{X})$. 4+4+2

OR

[Boolean Algebra and Automata Theory]

- 1. Answer any *ten* of the following: $2 \times 10 = 20$
 - (a) Show that the relation \leq is a total order on the set of real numbers \mathbf{R} .
 - (b) Define Strict and Partial Orders in a set.
 - (c) Identify extreme elements in the Poset: "The divisors of 60, ordered by divisibility."
 - (d) Is D_{12} a Boolean lattice? Explain.
 - (e) Let < A, ≤> be a totally ordered set. Prove that if A has more than two elements, then it is not a complemented lattice, even if it has a minimum and a maximum.
 - (f) Prove that every finite Boolean lattice with more than one element has atomic elements.
 - (g) Prove the following proposition, using the axioms of Boolean Algebra: x(x+y) = x.
 - (h) Show how AND can be simulated using only NAND gates.
 - (i) Calculate the number of distinct Boolean functions from B'' to B.
 - (j) Define empty string and the length of a string.
 - (k) How a DFA processes string?

- (1) What is transition diagram for DFA?
- (m) Differentiate between DFA and NFA.
- (n) Define pumping lemma for regular languages.
- (o) Convert the grammar $A \rightarrow aS \mid bS \mid a$ to a PDA that accepts the same language by empty stack.
- 2. Answer any *four* of the following: $5\times4=20$
 - (a) Prove that a Language L is accepted by some DFA if and only if L is accepted by some NFA.
 - (b) Design a PDA to accept each of the following languages:
 - (i) $\left\{a^ib^jc^k \mid i \neq j \text{ or } j \neq k\right\}$
 - (ii) The set of all strings of a's and b's that are not of the form ww, i.e., not equal to any string repeated.
 - (c) If L = N(P) for some DPDA, P, then show that L has a unambiguous context free grammar.
 - (d) Show that L_{nc} is recursively enumerable.
 - (e) Use Karnaugh maps to find the minimal form for the expression: xyz + xyz' + xy'z + x'yz + x'y'z.
 - (f) The Boolean function Y = AB + CD is to be realized using only 2 input NAND gates. What is the minimum number of gates required?

3. Answer any two of the following:

 $10 \times 2 = 20$

(a) (i) Convert to a *DFA* the following *NFA* and informally describe the language it accepts: 6

	0	1
$\rightarrow p$	$\{p,q\}$	{ <i>p</i> }
q	{r}	{r}
r	{s}	θ
*5	{s}	{s}

ne of paregon a Little to he to

- (ii) If L and M are regular languages then show that $L \cap M$ and L^R are also regular languages.
- (b) (i) Let $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0)$ be a PDA then show that there exist a context free grammar G such that L(G) = N(P).
 - (ii) Design the turning machine for the following language: $\{a^nb^nc^n \mid n \ge 1\}$.
- (c) (i) Show that the divisibility relation is not a partial order on the set of integers Z. Which property is lacking?
 - (ii) Show that every non-empty subset of a poset is also a poset.

(iii)	Give an	example	to s	how	that	maximal,	and
	minimal	elements	of S	need	not	be unique.	. 2

- (iv) If a poset is infinite, can it be embedded in a totally ordered set? Prove it or disprove it. 2
- (d) (i) State and prove the De-Morgans law for Boolean lattice.
 - (ii) Show that if a Boolean lattice has more than two elements then it is not totally ordered. 2
 - (iii) Define Boolean algebra. 2

Distance of the Color of the

The printing much and of set on and (7)

OR

[Portfolio Optimization]

1. Answer any ten questions:

2×10=20

- (a) What is the Portfolio Management Process?
- (b) Explain the structure of SEBI.
- (c) What are the Types of Investors?
- (d) How would you calculate the cost of Equity?
- (e) What is the monetary policy?
- (f) What are the tax benefits in mutual fund?
- (g) Which is better Equity or Real Estate?
- (h) What is NAV?
 - (i) You save Rs. 100 and invest it at a nominal interest rate of 8%. Given the expected inflation is 5% per year, what is the real rate of return?
- (j) What is portfolio risk and return?
- (k) What is Annuity?
- (l) Differentiate between Security Market Line (SML) and Capital Market Line (CML).
- (m) Define diversification.
- (n) Explain Rebalancing.
- (o) What is a primary market?

2. Answer any four questions:

 $5 \times 4 = 20$

- (a) Define:
 - (i) Beta of portfolio
 - (ii) Security market line
- (b) You have a portfolio with a beta of 0.84. What will be the new portfolio beta if you keep 85% of your money in the old portfolio and 14% in a stock with a beta of 1.93?
- (c) What are some of the benefits of diversification?
- (d) Use the information in the following to answer the questions below:

State of Economy	Probability of state	Return on A in state	Return on B in state
Boom	35%	0.040	0.210
Normal	50%	0.030	0.080
Recession	15%	0.046	-0.010

What is the expected return of each asset?

- (e) What are the functions of SEBI?
- (f) How do Mutual Funds work?
- 3. Answer any two questions:

 $10 \times 2 = 20$

(a) Prove that the expected return μ_i on any asset i

satisfies
$$\mu_i = r_f + \beta_i (\mu_M - r_f)$$
, where $\beta_i = \frac{\sigma_{iM}}{\sigma_{M^2}}$

P.T.O.

and σ_{iM} is the covariance of the return on asset *i* and the market portfolio r_M ; $\sigma_{M^2} = \text{var}(r_M)$.

(b) Consider 3 assets with rates of return r_1 , r_2 and r_3 , respectively. The covariance matrix and

expected rates of return are
$$\Sigma = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix}$$
 and

$$m = \begin{pmatrix} 0.4 \\ 0.4 \\ 0.8 \end{pmatrix}.$$

- (i) Find the minimum variance portfolio.
- (ii) Find a second efficient portfolio.
- (iii) If the risk free rate is $r_f = 0.2$, find an efficient portfolio of risky assets.
- (c) For the Markowitz mean-variance portfolio solve the quadratic programming problem

minimize
$$\frac{1}{2}w^T \Sigma w - \lambda m^T w$$

subject to
$$e^T w = 1$$
,

where
$$w = (w_1, w_2, \dots, w_n)^T$$
,
 $m = (m_1, m_2, \dots, m_n)^T$, $\mu_i = E(r_i)$,
 $z = (r_1, r_2, \dots, r_n)^T$, $cov(z) = \Sigma$

- (d) Assume that the expected rate of return on the market portfolio is 24% ($r_M = 0.24$) and the rate of return on T-Bills (risk free rate) is 7% ($r_f = 0.07$). The standard deviation of the market is 33% ($\sigma_M = 0.33$). Assume that the market portfolio is efficient.
 - (i) What is the equation for the capital market line?
 - (ii) If an expected return of 38% is desired, what is the standard deviation of this position?