B.Sc./5th Sem (H)/MATH/22(CBCS)

2022

5th Semester Examination MATHEMATICS (Honours)

Paper: DSE 1-T

[CBCS]

Full Marks: 60

Time: Three Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

[Linear Programming]

1. Answer any ten questions:

 $2 \times 10 = 20$

- (a) Define convex set.
- (b) What is an extreme point in E^n ?
- (c) What is the dual of an LPP?
- (d) Define the saddle point of a matrix game.
- (e) Solve the LPP by graphical method:

$$\operatorname{Max} Z = 5x_1 + 3x_2$$

Subject to $3x_1 + 5x_2 \le 15$

 $5x_1 + 2x_2 \le 10$

 $x_1, x_2 \ge 0$

- (f) When does a set of vectors form a basis of E^n ?
- (g) Prove that a hyperplane is a convex set.

- (h) Is assignment problem a Linear Programming problem? Justify.
- (i) Show that the convex hull of two points x_1 and x_2 is the line segment joining these points.
- (i) Explain what is meant by a transportation problem.
- (k) Is the solution $x_1 = -6$, $x_2 = 0$, $x_3 = 4$ a basic solution of the following equations?

$$x_1 + 2x_2 + 3x_3 = 6$$
$$2x_1 + x_2 + 4x_3 = 4$$

- (1) State the fundamental theorem of LPP.
- (m) When a LPP is said to be has an unbounded solution?
- (n) Show that the LPP Max $z = 3x_1 + 9x_2$ subject to $x_1 + 4x_2 \le 8$ $x_1 + 2x_2 \le 4$ $x_1, x_2 \ge 0$

admits of a degenerate basic feasible solution.

(o) Write down the transportation problem

$$\begin{array}{c|ccccc} D_1 & D_2 \\ O_1 & 3 & 1 & 10 \\ O_2 & 2 & 4 & 8 \\ \hline & 12 & 6 & & \end{array}$$

into LPP.

2. Answer any four questions:

5×4=20

- (a) Given a basic feasible solution $X_B = B^{-1}b$ with $Z_0 = C_B X_B$ to the LPP Max Z = CX subject to AX = b, $X \ge 0$ and $z_j c_j \ge 0$ for every column a_j in A. Prove that z_0 is the maximum value of Z.
- (b) Show that by the simplex method, the following LPP admits more than one optimum solution.

Max
$$Z = 2x_1 + 3x_2$$

 $x_1 + 3x_2 \le 21$
 $2x_1 + 3x_2 \le 24$
 $x_1 + x_2 \le 10$
 $5x_1 + 4x_2 \le 48$
 $x_1 \ge 0, x_2 \ge 0$

 $Min Z = x_1 + x_2$

- (c) Prove that if the primal problem has an unbounded objective function then the dual has no feasible solution.
- (d) Using two phase method, show that feasible solution does not exist to the problem

subject to
$$3x_1 + 2x_2 \ge 30$$

 $2x_1 + 3x_2 \ge 30$
 $x_1 + x_2 \le 5, x_1 \ge 0, x_2 \ge 0.$

(e) Formulate the dual of the following LPP and hence solve it.

Maximize
$$Z = 3x_1 - 2x_2$$

subject to $x_1 \le 4$
 $x_2 \le 6$
 $x_1 + x_2 \le 5$
 $-x_2 \le -1$
 $x_1, x_2 \ge 0$

(f) Solve the following game graphically

		I	3	
	1	3	0	2
Α	3	0	1	-1

3. Answer any two questions:

 $10 \times 2 = 20$

8

(a) (i) Use Charne's Big-M method to

Minimize
$$Z = 2x_1 + 4x_2 + x_3$$

subject to
$$x_1 + 2x_2 - x_3 \le 5$$
$$2x_1 - x_2 + 2x_3 = 2$$
$$-x_1 + 2x_2 + 2x_3 \ge 1$$
$$x_1, x_2, x_3 \ge 0$$

(ii) Determine the position of the point (-6, 1, 7, 2) relative to the hyperplane

$$3x_1 + 2x_2 + 4x_3 + 6x_4 = 7$$

(b) Solve the following transportation problem

2011	D_1	D ₂	D_3	D ₄	ai
Oi	3	8	7	4	30
O ₂	5	2	9	5	50
O ₃	4	3	6	2	80
b _j	20	60	55	40	

Is there any alternative optimal solution to the problem? 8+2

(c) (i) Find the assignments to find the minimum cost for the assignment problem with the following cost matrix.

	Α	В	С	D	Е
1	6	5	8	11	16
2	1	13	16	1	10
3	16	11	8	8	8
4	9	14	12	10	16
5	10	13	11	8	16

- (ii) Write a short note on degeneracy in LPP. 3
- (d) (i) Prove that if a fixed number P is added to

each element of the pay-off matrix then the value of the game is increased by P while the optimal strategies remains unchanged.

(ii) Use dominance to reduce the pay-off matrix

		A	1	(
	-5	3	1	20
В	5	5	4 0	6
3	-4	-2	0	-5

and hence solve.

County of the last than to

5

OR

[Point Set Topology]

Group - A

1. Answer any ten questions:

 $2 \times 10 = 20$

- (a) Is union of two topologies on X, a topology? Answer with justification.
- (b) Show that each function on [0, 1] onto $\{1, \frac{1}{2}, \frac{1}{3}, \dots\}$ must fail to be continuous.
- (c) Give definition of a maximal element and least upper bound of a partial ordered set. Give an example of a set with least upper bound but having no maximal element.
- (d) Define the subspace topology with an example.
- (e) If α , β and γ be the cardinal numbers, prove that $\left(\alpha^{\beta}\right)^{\gamma} = \alpha^{\beta\gamma}.$
- (f) If $X = \{a, b, c\}$, $\tau = \{\phi, X, \{a\}, \{b, c\}\}$, then find the derived sets of all subsets of X.
- (g) Show that the union of two connected subsets of a space need not be connected.
- (h) Find the interior of the set [0, 1] in the lower limit topology on \mathbb{R} .

- (i) List five distinct non-trivial topologies for the set $X = \{a, b, c, d\}$.
- (j) Show that in a topological space $X, X \setminus \overline{A} = (X \setminus A)^{\circ}, A \subset X$.
- (k) Show that every indiscrete topological space is compact.
 - (l) If $X = \{a, b, c\}$, $\tau = \{\varphi, X, \{a\}, \{b, c\}\}$, then show that the topological space (X, τ) is disconnected.
- (m) State the Lebesgue number lemma.
- (n) If $\tau = \{\phi, X, \{1\}, \{2,3\}, \{1,2,3\}, \{2,3,4,5\}\}$ is a topology on $X = \{1, 2, 3, 4, 5\}$, then find the components of X.
- (o) Show that the map $f:(\mathbb{R},U) \to (\mathbb{R},U)$ given by

$$f(x) = x \text{ if } x < 1$$

$$= 1 \text{ if } 1 \le x \le 2$$

$$= \frac{x^2}{4} \text{ if } x > 2$$

is continuous but not open, here, U denotes the usual topology.

Group - B

2. Answer any four questions:

 $5 \times 4 = 20$

- (a) If $\mathbb N$ denotes the set of natural numbers and $\mathbb R$ denotes the set of real numbers then prove that
 - (i) cardinality of $2^{\mathbb{N}}$ = cardinality of \mathbb{R} .
 - (ii) cardinality of $\mathbb{R}^{\mathbb{N}}$ = cardinality of \mathbb{R} . 3+2
- (b) Let X be a non-empty set and a mapping $C: P(X) \rightarrow P(X)$ satisfying
 - (i) $A \subset C(A) \forall A \in P(X)$
 - (ii) $C(A) = \varphi$
 - (iii) $C(A \cup B) = C(A) \cup C(B) \forall A, B \in P(X)$
 - (iv) $C(C(A)) = C(A) \forall A \in P(X)$

Then show that there exists a unique topology τ on X such that for each $A \subset X$, $C(A) = \overline{A}^{\tau}$. 5

- (c) Prove that a family β of subsets of X containing ϕ is a base for some topology on X if and only if
 - (i) For any two elements B_1 , $B_2 \in \beta$ and for any $x \in B_1 \cap B_2$, $\exists B_3 \in \beta$ such that $x \in B_3 \subset B_1 \cap B_2$.
 - (ii) $X = \bigcup \{B: B \in \beta\}$.

- (d) Let (X, τ) be a product topological space of the family of spaces $\{\langle X_i, \tau_i \rangle : i \in I \}$. Then prove that
 - (i) $\Pi_i:\langle X, \tau \rangle \rightarrow \langle X_i, \tau_i \rangle$ is continuous for each $i \in I$.
 - (ii) τ is the weakest topology on X, such that each $\Pi_i:\langle X, \tau \rangle \rightarrow \langle X_i, \tau_i \rangle$ is continuous.
 - (iii) $\Pi_i:\langle X, \tau \rangle \to \langle X_i, \tau_i \rangle$ is an open mapping. 2+2+1
 - (e) Prove that every real-valued continuous function over a compact space is bounded and attains its bounds. Give an example to show that the result does not hold if the compactness of the space is withdrawn.
 - (f) Let (X, d) be a metric space and $A \subseteq X$. Prove that if A is totally bounded then A is bounded. Is the converse true? Justify with an example. 2+3
- 3. Answer any *two* questions: $10 \times 2 = 20$
 - (a) (i) Prove that Zorn's Lemma (Restricted form)
 ⇒ Hausdorff maximality principal ⇒ Zorn's Lemma (General form).
 - (ii) State and prove Schoder-Bernstine theorem.

5+5

- (b) (i) Prove that a function $f:\langle X, \tau_1 \rangle \to \langle X, \tau_2 \rangle$ is continuous if and only if for any $A \subseteq X$, $f(\overline{A}) \subseteq \overline{f(A)}$. Hence show that a bijection function f is a homeomorphism if and only if $f(\overline{A}) = \overline{f(A)}$.
 - (ii) Prove that every closed surjective continuous function is a quotient map. Is the converse true? Answer with justification. (3+2)+(3+2)
- (c) (i) Prove that continuous image of a connected set is connected. Hence show that a continuous real valued function defined over a connected set possesses intermediate value property.
 - (ii) Prove that a set in the space of real with usual topology is connected if and only if it is an interval. (3+2)+5
- (d) Let (X, d) be a metric space and $A \subseteq X$. Then prove that
- (i) If A is compact, then A is totally bounded.
 - (ii) If X is complete and A is totally bounded, then A is compact in X. 5+5

OR

[Theory of Equations]

- 1. Answer any ten questions from the following: 2×10=20
 - (a) If $\alpha_1, \alpha_2, ..., \alpha_n$ be the roots of the equation $x^n + nax + b = 0$ prove that $(\alpha_1 \alpha_2)(\alpha_1 \alpha_3)$... $(\alpha_1 \alpha_n) = n(\alpha_1^{n-1} + a)$.
 - (b) Apply Descarte's rule of signs to find the nature of the roots of the equation $x^6 + 7x^4 + x^2 + 2x + 1 = 0$.
 - (c) Solve the equation $x^4 + x^2 2x + 6 = 0$, it is given that 1 + i is a root.
 - (d) How many times the graph of the polynomical $(x^3-1)(x^2+x+1)$ will cross x-axis.
 - (e) Let $f(x) = a_0 x^n + a_1 x^{n-1} + ... + a_{n-1} x + a_n$, where $a_0, a_1, ..., a_n$ are integers. If $\frac{p}{q}$ be a rational root of the equation f(x) = 0, where p and q are prime to each other, then prove that p is a divisor of a_n .
 - (f) Find the equation whose roots are the squares of the roots of the cubic $x^3 ax^2 + bx 1 = 0$.

- (g) The roots of the equation $x^3 3px^2 + 3(p-1)x$ +1=0 are α , β , γ , find the equation whose roots are $1-\alpha$, $1-\beta$, $1-\gamma$.
- (h) If p, q, r be positive, then find the nature of the roots of the equation $x^4 + px^3 + qx r = 0$.
- (i) If $p_r = p_{r+1} = p_{r+2}$, prove that $x^n + p_1 x^{n-1} + p_2 x^{n-2} + \dots + p_n = 0$ cannot have more than n-2 real roots.
- (j) The equation $x^n nx + n 1 = 0$, (n > 1) is satisfied by x = 1. What is the multiplicity of this root?
- (k) If α be an imaginary root of $x^{11} 1 = 0$, prove that $(\alpha + 1)(\alpha^2 + 1)\cdots(\alpha^{10} + 1) = 1$.
 - (1) If α , β , γ are the roots of $x^3 + 3x + 2 = 0$, then find the value of $\sum \alpha \beta (\alpha + \beta)^3$.
- (m) If α , β , γ are the roots of $x^3 ax^2 + bx c = 0$, then prove that area of the triangle whose sides are α , β , γ is $\frac{1}{4} \left[a \left(4ab a^3 8c \right) \right]^{1/2}$.
- (n) Find an upper limit of the real roots of the equation $x^4 2x^3 + 3x^2 2x + 2 = 0$.

- (o) If $\alpha_1, \alpha_2, \dots, \alpha_n$ be the roots of the equation $x^n + \frac{x^{n-1}}{1!} + \frac{x^{n-2}}{2!} + \dots + \frac{1}{n!} = 0 \quad \text{and} \quad S_r = \sum \alpha_1^r,$ show that $S_r = 0$ for $r = 2, 3, \dots, n$ but $S_r \neq 0$ for $r = n+1, n+2, \dots$
- 2. Answer any four questions:

5×4=20

(a) If α , β , γ be the roots of the equation $x^3 - 3x + 1 = 0$, then prove that

$$\begin{vmatrix} \alpha^3 & \alpha^2 & 1 \\ \beta^3 & \beta^2 & 1 \\ \gamma^3 & \gamma^2 & 1 \end{vmatrix} = \pm 27.$$

- (b) Obtain the equation whose roots are the square of the roots of the equation $x^4 x^3 + 2x^2 x + 1 = 0$. Use Descarte's rule of signs to the resulting equation to deduce that the given equation has no real root.
- (c) If $\alpha, \beta, \gamma, \delta$ be the roots of $x^4 + px^3 + qx^2 + rx + s = 0$, then find the equation whose roots are $\beta\gamma + \alpha + \delta$, $\gamma\alpha + \beta\delta$, $\alpha\beta + \gamma\delta$.
- (d) If the equation $x^n p_1 x^{n-1} + p_2 x^{n-2} p_3 x^{n-3} + \dots = 0$ has *n* positive distinct roots, then prove that p_1, p_2, \dots are all positive and $p_1^2 2p_2 > 0$.

- (e) Let $\alpha_1, \alpha_2, \dots, \alpha_n$ be the roots of the equation $f(x) = x^n + p_1 x^{n-1} + p_2 x^{n-2} + \dots + p_n = 0 \text{ and let } s_r = \alpha_1^r + \alpha_2^r + \dots + \alpha_n^r \text{ where } r \text{ is an integer } \ge 0.$ Then prove that $s_r + p_1 s_{r-1} + p_2 s_{r-2} + \dots + p_n s_{r-n} = 0$, if $r \ge n$.
- (f) If $\alpha + \beta + \gamma + \delta = 0$, prove that $\frac{\alpha^5 + \beta^5 + \gamma^5 + \delta^5}{5}$ $= \frac{\alpha^3 + \beta^3 + \gamma^3 + \delta^3}{3} \cdot \frac{\alpha^2 + \beta^2 + \gamma^2 + \delta^2}{2}$. Also find the value of $\sum \alpha^7$.
- 3. Answer any two questions:

 $10 \times 2 = 20$

- (a) (i) Let $f(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n$, where a_0, a_1, \dots, a_n are integers. If f(0) and f(1) are both odd, prove that the equation can not have an integer root. Hence prove that the equation $x^4 + 6x^3 + 3x^2 14x + 15 = 0$ cannot have an integer root.
 - (ii) Apply Descarte's rule of signs to find the nature of the roots of the equation $x^8 + 1 = 0$. (4+3)+3
- (b) (i) Find the number and position of the real roots of the equation $x^3 3x^2 4x + 13 = 0$ by using Sturm's method.

- (ii) If α , β be any two roots of the equation $x^3 + qx + r = 0$. Find the equation whose roots are the six values of $\frac{\alpha}{\beta}$.
- (c) (i) Show that the roots of the cubic $x^3 3a^2x 2a^3\cos 3A = 0$ are $2a\cos A$, $2a\cos(120^{\circ} \pm A)$.
 - (ii) If α be an imaginary root of the equation $x^5 1 = 0$, find the equation whose roots are $\alpha + 2\alpha^4$, $\alpha^2 + 2\alpha^3$, $\alpha^3 + 2\alpha^2$, $\alpha^4 + 2\alpha$.
- (d) (i) Show that the roots of the equation (x-a) $(x-b)(x-c)-f^2(x-a)-g^2(x-b)-h^2(x-c)$ +2fgh are all real.
 - (ii) Prove that if two roots of Euler's cubic vanish, then the biquadratic $a_0x^4 + 4a_1x^3 + 6a_2x^2 + 4a_3x + a_4 = 0$ has two pairs of equal roots

given by
$$\frac{-a_1 \pm \sqrt{(-3H)}}{a_0}.$$
 5+5