2022

3rd Semester Examination PHYSICS (Honours)

Paper: C5-T

[Mathematical Physics - II]

[CBCS]

Full Marks: 40

Time: Two Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Group - A

1. Answer any five of the following:

 $2 \times 5 = 10$

- (a) Define regular and apparent singular point.
- (b) What are Dirichlet conditions for a function to be piece-wise regular in a given interval?
- (c) Write down the generating relation of Bessel function and show that $J_{n-1}(x) J_{n+1}(x) = 2J'_n(x)$.
- (d) Define cyclic coordinates. Show that the generalized momentum conjugate to cyclic coordinate is conserved.

P.T.O.

- (e) Write down the Hermite's polynomial and hence show that $H'_n(x) = 2nH_{n-1}(x)$.
- (f) Write down the Laplace's equation in spherical polar coordinates.
- (g) Prove that $\Gamma(n+1) = n\Gamma(n)$, n > 0.
- (h) Derive the canonical equations of Hamiltonian.

Group - B

- 2. Answer any *four* of the following: $5\times4=20$
 - (a) Express $f(x) = x^2$ as a Fourier's series in the interval $-\pi \le x \le \pi$, hence show that at $x = \pi$, $\sum_{n=0}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.
 - (b) Prove that the Legendre's polynomials $P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 1)^n, \text{ symbols have their usual meaning.}$
 - (c) Write down the Euler's equation in variational problems and using this show that the path of shortest (brachistos) time (chronos) of a particle is a cycloid.

- (d) Write down the Laplace's equation on a plane in terms of the polar coordinates. Solve it by the method of separation of variables and write the general expression of the solution which is finite at r = 0 and single valued in θ . 1+4
- (e) A simple pendulum consists of mass m_2 , with a mass m_1 at the point of support which can move on a horizontal line in the plane in which m_2 moves. Find the Lagrangian of the system and Lagrange's equations. 3+2
- (f) A bar of length L whose entire surface is insulated including its ends at x = 0 and x = L has initial temperature f(x). Determine the subsequent temperature of the bar.

Group - C

3. Answer any *one* of the following:

 $10 \times 1 = 10$

- (a) (i) State Hamilton's principle and derive Lagrange's equation of motion from it. Discuss how the result will be modified for nonconservative forces.
 - (ii) From the generating function of Legendre's polynomials, show that $nP_n(x) = xP'_n(x) P'_{n-1}(x).$
 - (iii) State the Parseval's identity of Fourier series. (1+4+1)+2+2

- (b) (i) Expand $f(x) = \sin x$, $0 < x < \pi$, in a Fourier cosine series.
- (ii) Evaluate the value of integration $\int_0^1 x^4 (1-x)^3 dx$, using Beta function.
- (iii) Write down the two dimensional wave equation in polar coordinates and solve it to find the eigen values and eigen functions in case of a circular membrane.

 4+2+4