2022

5th Semester Examination CHEMISTRY (Honours)

Paper: C 11-T

[Inorganic Chemistry-IV]

[CBCS]

Full Marks: 40

Time: Two Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Group - A

Answer any five questions from the following:

 $2 \times 5 = 10$

- (a) Explain why freshly prepared hydroxide of Co²⁺ is blue but turns pink on warming.
 - (b) Write the differences between 'Lanthanide and Actinide Contraction'.
 - (c) ReO₄ is colourless while MnO₄ is violet. Explain.
 - (d) What is purple of Cassius? What is its use?
 - (e) Why does KCN reduce Cu(II) to Cu(I)?
 - (f) State the reasons why 'chromic acid' is used to clean laboratory glass wares.

P.T.O.

- (g) Calculate the ground state magnetic moment of Sm^{3+} at room temperature.
- (h) The experimental magnetic moment of $[Co(H_2O)_6]^{2+}$ is different than the calculated value. Explain.

Group - B

Answer any four questions from the following: $5 \times 4 = 20$

- 2. (a) What happen when
 - (i) K_2PtCl_4 in dilute HCl solution is treated with ethylene.
 - (ii) Chromyl Chloride is added to a saturated solution of potassium chloride.
 - (b) What is the common oxidation state of lanthanides? 2+2+1
- 3. (a) Using appropriate Orgel diagram, explain the electronic transition for $[Ti(H_2O)_6]^{3+}$.
 - (b) Explain why Fe^{3+} and Fe^{2+} form complexes with CN^{-} ions but not with NH_3 . 3+2
- 4. (a) $[K_3W_2Cl_9]$ is diamagnetic whereas $[K_3Cr_2Cl_9]$ is strongly paramagnetic.
 - (b) Comment on the observed magnetic moments (300K) of the following:
 - K_3CoF_6 (5.5 B.M); K_3CuF_6 (2.8 B.M); K_3NiF_6 (0.0 B.M) 2+3

- 5. (a) An octahedral Ni(II) complex shows d-d absorption bands at 10,750,17,500 and 28,200 cm⁻¹. Assign the bands from the Orgel diagram.
 - (b) Predict the colour of $[Cr(H_2O)_6]^{3+}$ ion, given $\Delta = 17,400 \text{ cm}^{-1}$.
- 6. (a) Explain why cation exchange resins in the acid form absorb La(III) ions more strongly than Lu(III) ions from aqueous solution?
 - (b) Ce^{3+} and Tb^{3+} are colourless but show strong absorption in UV region. Give proper reasons.

2 + 3

- 7. (a) Why electron transfer between $[Fe(CN)_6]^{3-}$ and $[Fe(CN)_6]^{4-}$ is much faster than between $[Co(NH_3)_6]^{2+}$ and $[Co(NH_3)_6]^{3+}$?
 - (b) In terms of CFT, explain why all six $Cu OH_2$ distances in $[Cu(H_2O)_5]^{2+}$ are not equal. 2+3

Group - C

Answer any one question from the following: 10×1=10

8. (a) Differentiate between 'crystal field strength' and 'crystal field stabilization energy'. For the Fe(II) ion, the mean pairing energy 'P' is found to be 23500 cm⁻¹ and magnitude of Δ is 13900 cm⁻¹. Calculate the CFSE for the complex in configuration corresponding to high spin and low spin state.

- (b) Why trans- $[Co(en)_2Cl_2]^+$ is more intensely coloured than trans- $[Co(en)_2F_2]^+$?
- (c) Explain the diamagnetic nature of the chromium (III) acetate dihydrate complex.
- (d) The electronic spectrum of *Ln*(III) ion gives rise to multiple sharp peaks—Explain. 4+2+2+2
- (a) The nitrite ion forms both the complexes [Co(NH₃)₅(ONO)]³⁺ (O-bonded) and [Co(NH₃)₅ (ONO)]³⁺ (N-bonded), but the latter is more stable.

 Explain.
 - (b) In octahedral V(III) and Cr(III) complexes, the d-d transition frequencies are of the order $v_1 < v_2 < v_3$. Explain why 10Dq correspond to v_1 for Cr(III) but $v_2 v_1$ for V(III).
 - (c) What is spin equilibrium? Explain with an example.
 - (d) Explain why diamagnetic [NiCl₄]²⁻ would be highly unstable?
 - (e) Explain of inorganic optically active complex with an example. 2+2+2+2+2