

B.Sc./4th Sem (H)/PHYS/24(CBCS)

2024

4th Semester Examination PHYSICS (Honours)

Paper: SEC 2-T

[CBCS]

Full Marks: 25

Time: Two Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answer wherever necessary.

[Computational Physics]

Group - A

Answer any three questions:

 $2 \times 3 = 6$

- 1. What is computer programming language? Explain with example.
- 2. Write down four Linux commands.
- 3. What are the differences between function and subroutine in Fortran?
- 4. What is GOTO statement in Fortran?
- 5. Write down the nested DO loop syntax in Fortran.

P.T.O.

2)

Group - B

Answer any two questions:

 $5 \times 2 = 10$

- 6. Explain different types of operators in Fortran.
- 7. What is algorithm? Write down the algorithm for sum of two matrices. 2+3
- 8. What is conditional statement? Write down the IF-ELSE statement and explain with flowchart. 1+2+2

Group - C

Answer any one question:

 $9 \times 1 = 9$

- 9. (a) What is Gnuplot? Write down Gnuplot commands for plotting $f(x) = \frac{1}{\sqrt{1+x^2}} \exp(-x^2)$ function and for plotting data from a file. 1+2+2
 - (b) Explain different data types in Fortran. 4
- 10. What is Latex? Discuss the basics of a Latex file. 2+7

make an energy of OR

[Basic Instrumentation Skill]

Group - A

Answer any three questions:

 $2 \times 3 = 6$

- 1. Calculate the value of multiple resistance on the 10 V range of a DC voltmeter that uses a galvanometer with 200 μA full scale deflection with an internal resistance of $1\,k\,\Omega$.
- 2. How a CRO can be used for the measurement of frequency?
- 3. What are the advantages of using digital instruments over analog instruments?
- 4. Explain sensitivity and resolution of an instrument.
- 5. In terms of input impedance and sensitivity, how is an electronic voltmeter better than an analog voltmeter?

Group - B

Answer any two questions:

 $5 \times 2 = 10$

- 6. Explain the principle of working of Digital Storage Oscilloscope (DSO).
- 7. Explain the working principle of a pulse generator with the help of a block diagram.

8. A set of independent voltage measurement taken by four observers was recorded as 105.02 V, 105.12 V, 105.07 V and 105.03 V. Calculate average voltage and average deviation.

Group - C

Answer any *one* question : $9 \times 1 = 9$

- (a) Draw the basic circuit diagram for a Q-meter. 9. Explain its operation and write the equation for Q factor.
 - (b) How is the universal counter used for the measurement of frequency? 5+4
- 10. (a) A Maxwell Bridge is used to measure inductive impedance.

At balance, the bridge constants are $C_1 = 0.01$ μF , $R_1 = 470 k\Omega$, $R_2 = 5.1 k\Omega$, $R_3 = 100 k\Omega$. Find the series equivalent of unknown impedance.

(b) Discuss the working principle of any basic (balancing type) RLC bridge in detail with the help of necessary diagram. 4+5

OR

[Renewable Energy and Energy Harvesting]

Group - A

	Answer	any	three	questions	:
--	--------	-----	-------	-----------	---

 $2 \times 3 = 6$

- 1. What is solar pond?
- 2. Suggest two methods to harvest piezoelectric energy.
- 3. What is geothermal energy? Schematically explain its harvesting.
- 4. What do you mean by overtopping device?
- 5. Give an account on the biogas generation along with its limitations.

Group - B

Answer any two questions:

 $5 \times 2 = 10$

- 6. What is fossil fuel? Discuss various types of fossil fuels and their formation. 2+3
- 7. What do you mean by offshore wind energy? Describe how wind turbine speed changes with the speed of the wind.

 2+3
- 8. How do linear generators work in content of electromagnetic energy harvesting and what are the key physical and mathematical models that describe their operation?
 2+3

P.T.O.

Group - C

Answer any *one* question : $9 \times 1 = 9$

9. What do you mean by solar cells? Describe how does a solar cell work and draw its characterization curve. Draw equivalent circuit of a solar PV module.

2+3+2+2

10. What resources are needed for hydroelectric power generation? Discuss environmental impact of hydropower generation. Discuss potential of ocean energy against wind and solar. 3+4+2

and the manufactured property and what are the key

OR

[Applied Optics]

Group - A

Answer any three questions:

 $2\times3=6$

- 1. How does population inversion facilitate the amplification of light in a laser and why is it a critical condition for laser operation?
- 2. Whether lasing action is possible in a two level system? Justify your answer.
- 3. A hologram is broken in to several pieces. Will you still be able to observe the image?
- 4. A mean optical power of 120 μW is launched in to an optical fiber of length 8 km. The mean optical power at the output is measured to be 3 μW. What is the signal attenuation per km for the fiber?
- 5. What is a Fiber Bragg Grating (FBG)?

Group - B

Answer any two questions:

 $5 \times 2 = 10$

6. Consider the formation of a hologram with a point object and a plane reference wave. Choose the z-axis to be along the normal from the point source to the plane of the hologram, assumed to be coincident with the plane

- z = 0. Obtain the interference pattern recorded by the hologram. (For simplicity you may assume the reference wave falls normally on the hologram).
- 7. What is Fourier transform and how can it be performed optically?
- 8. (a) Consider a laser oscillator having an active medium with gain coefficient Y placed between a Fabry-Perot cavity consisting of rear mirror of reflectivity R₁ and output coupler of reflectivity R₂. If the attenuation constant per pass inside the cavity be α, find out the threshold condition to begin the laser oscillation.
 - (b) What is the basic principle of Fourier Transform Nuclear Magnetic Resonance spectroscopy. 3+2

Group - C

Answer any one question:

 $9 \times 1 = 9$

- 9. (a) A gain medium, capable of producing lasing action at wavelength 800 nm, is under thermal equilibrium at T = 800°K. Calculate the ratio of the number of spontaneous emission to stimulated emission.
 - (b) Write down the working principle of a He-Ne Laser.
 - (c) With a schematic diagram discuss the origin of evanescent wave in an optical fiber. What are the precautions to be taken to prevent the energy loss due the evanescent wave?

 3+3+3

10. What are the basic components of an optical fiber? Explain with a diagram. What happens if an optical fiber lacks cladding? What is the fundamental principle of optical fibers, and how does light propagate within an optical fiber?

3+2+2+2