

B.Sc./4th Sem (H)/PHYS/24(CBCS)

2024

4th Semester Examination PHYSICS (Honours)

Paper: C 9-T

[Elements of Modern Physics]

[CBCS]

Full Marks: 40

Time: Two Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Group - A

Answer any five questions:

 $2 \times 5 = 10$

- 1. What is the conclusion of double slits experiment with electrons?
- 2. What is ultraviolet catastrophe?
- 3. Explain how the time energy uncertainty principle can be used to estimate the lifetime of virtual particles.
- 4. Are all the particles at rest at 0 K according to quantum mechanics?
- 5. What was the reason behind Pauli's neutrino hypothesis?

P.T.O.

- 6. What is the difference between spontaneous and stimulated emission?
- Calculate the wavelength in nm of electrons which have been accelerated from rest through a potential difference of 54V.
- 8. Define packing fraction.

Group - B

Answer any *four* of the following: $5\times4=20$

9. The state of a free particle is described by the following wave function.

$$\phi(x) = 0 \text{ for } x < -3a$$

$$= c \text{ for } -3a < x < a$$

$$= 0 \text{ for } x > a$$

- (a) Determine c using the normalization condition. 2
 - (b) Find the probability of finding the particle in the interval [0, a].
 - 10. What is the source of binding energy in a nucleus? What are the important features of binding energy/nucleon vs. mass number curve? 2+3
 - 11. A thermal neutron has a speed v at temperature T = 300K.

- (a) Calculate its de Broglie wavelength. State whether a beam of these neutrons could be diffracted by a crystal, and why?2+1
- (b) Use Heisenberg's Uncertainty principle to estimate the kinetic energy (in MeV) of a nucleon bound within a nucleus of redius 10⁻¹⁵m.
- 12. (a) Check whether in operator $\frac{d}{dx}$ is hermitian or not.
 - (b) Consider a one dimensional particle which is confined within the region $0 \le x \le a$ and whose wavefunction is $\psi(x,t) = \sin(\pi x/a) \exp(-iwt)$. Find the potential V(x).
- 13. Explain nuclear fission and fusion from binding energy curve.
- 14. Describe the liquid drop model of nucleus. What are the features that it can not explain?

 4+1

Group - C

Answer any *one* of the following: $10 \times 1 = 10$

- 15. Consider a particle of mass m moving freely between x = 0 and x = a inside an infinite square well potential
 - (a) Find the ground and the 1st excited state of energy and the wavefunction.

- (b) Calculate the expectation values of $\langle x \rangle_1$, $\langle p \rangle_1$ and $\langle x^2 \rangle_1$, $\langle p^2 \rangle_1$.
- (c) Calculate the uncertainty product $\Delta x \Delta p$. 5+4+1
- 16. Discuss the working principle of ruby laser. Why He Ne laser is better than Ruby laser? Can you make laser with any material?
 6+2+2