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Abstract: Endometriosis is characterized by unwanted growth of endometrial tissue in different
locations of the female reproductive tract. It may lead to recurrent pregnancy loss, which is one of
the worst curses for the reproductive age group of human populations around the world. Thus, there
is an urgent need for unveiling any common source of origin of both these diseases and connections,
if any. Herein, we aimed to identify common potential biomarker genes of these two diseases via in
silico approach using meta-analysis of microarray data. Datasets were selected for the study based
on certain exclusion criteria. Those datasets were subjected to comparative meta-analyses for the
identification of differentially expressed genes (DEGs), that are common to both diagnoses. The
DEGs were then subjected to protein-protein networking and subsequent functional enrichment
analyses for unveiling their role/function in connecting two diseases. From the analyses, 120 DEGs
are reported to be significant out of which four genes have been found to be prominent. These
include the CTNNB1, HNRNPAB, SNRPF and TWIST2 genes. The significantly enriched pathways
based on the above-mentioned genes are mainly centered on signaling and developmental events.
These findings could significantly elucidate the underlying molecular events in endometriosis-based
recurrent miscarriages.

Keywords: endometriosis; recurrent pregnancy loss; meta-analysis; functional enrichment;
TWIST2 gene

1. Introduction

Endometriosis is commonly known as a chronic condition that has been character-
ized by the growth of endometrial tissue in sites other than the endometrium [1]. This
may result in the abnormal growth of endometrial cells outside the uterus and cause a
painful condition. According to NHS-UK, symptoms include severe pelvic pain during
periods, sex, urination and defacation. Major symptoms could be constipation, diar-
rhea, and even blood during urination. Women also face difficulties in getting pregnant
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(https://www.nhs.uk/conditions/endometriosis/, accessed on 20 July 2020). After sev-
eral years of research, the pathogenesis of endometriosis is still not clear [2]. The existence
of endometriosis has been found from Müllerian or non-Müllerian stem cells, which may
include those from bone marrow, the endometrial basal layer, the peritoneum, or Mül-
lerian remnants [3]. In addition, scientists believe that dysregulation of the canonical
Wnt/β-signaling pathway could be responsible for the endometriotic lesions leading to
the endometriosis condition [2]. Wnt/β-catenin signaling also has a role in governing the
endometrial cells regulated by estrogen and progesterone. Any changes in the expression
of estrogen and progesterone receptors may cause progesterone resistance in endometriosis
patients [4]. Infertility problems may be caused due to recurrent pregnancy loss which
has been found a major issue in endometriosis patients. Indeed, the loss of two or more
pregnancies has also been reported by the European Society of Human Reproduction and
Embryology Recurrent Pregnancy Loss (RPL) [5], where ectopic pregnancy and molar
pregnancy has been excluded. Endometriosis-associated infertility could be identified
by potential markers, such as inflammatory cytokines, iron and oxidative stress, oxidant-
antioxidant imbalance, and iron-dependent progression of endometriosis [6]. A recent
literature review suggested that endometrial immune dysregulation could be responsible
for RPL and may also lead to endometriosis [7]. Thus far, the exact reason for endometriosis
is still not clear and, therefore meta-data analysis may provide further knowledge to solve
the molecular pathogenesis complexity of such condition(s). To find the genes involved in
the loss of the hormonal functions and association with endometriosis, Sapkota et al. [8]
performed a large scale, 11 genome-wide case-control dataset meta-analysis and found
that FN1, CCDC170, ESR1, SYNE1, and FSHB are the 5 genes that could be responsible
for the endometriosis risk. Therefore, computational system biology plays a major role in
meta-data analysis. In combination with machine learning, many biomarker genes have
been identified, including NOTCH3, SNAPC2, B4GALNT1, SMAP2, DDB2, GTF3C5, and
PTOV1 from the transcriptomic data analysis, and TRPM6, RASSF2, TNIP2, RP3-522J7.6,
FGD3, and MFSD14B from the methylomic data analysis [9]. The latest metadata investi-
gation related to polymorphisms and endometriosis tried to find the genetic level reason
behind endometriosis, where five polymorphisms have been associated with endometrio-
sis [10]. They were glutathione S-transferase pi 1 (GSTP1) rs1695, interferon-gamma (IFNG)
(CA) repeat, wingless-type MMTV integration site family member 4 (WNT4) rs16826658,
rs2235529, and glutathione S-transferase mu 1 (GSTM1) null genotype. The present study
aimed to identify the genes that are differentially expressed in endometriosis and RPL
conditions, and to elucidate their involvement in protein–protein interactions, as well as
their functional importance in biological pathways as potential biomarkers common to
both endometriosis and RPL.

2. Materials and Methods
2.1. Microarray Data

Suitable gene expression microarray samples were obtained from the NCBI Gene
Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo/, accessed on
20 July 2020) [11]. A thorough search was performed of the GEO database from July 2020
to September 2020 (3 months) using the keywords “Endometriosis AND Recurrent Preg-
nancy Loss”. The GEO datasets that were included in our study are GSE7305, GSE23339,
GSE26787, GSE58178 and GSE111974 subject to their fulfillment of certain criteria. The
gene expression profiling was based on endometrial tissue and each dataset contained
sufficient data to perform a meta-analysis. The following inclusion criteria were imposed
while selecting the datasets for the meta-analyses: (i) the sample type must be endometrial
tissue only, (ii) datasets should not contain overlapping sample sets, (iii) datasets must not
have been generated from the same research laboratory, and (iv) they are heterogeneous in
terms of microarray platform (Table 1). The datasets that met these inclusion criteria were
selected for the present study.

https://www.nhs.uk/conditions/endometriosis/
http://www.ncbi.nlm.nih.gov/geo/
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2.2. DEG Screening and Meta-Analyses

Analyses of microarray expression data were performed using the ExAtlas meta-
analyses software [12]. The expression profiles of the 5 GEO datasets that were included in
our study were extracted from the GEO database.

Normalization of the data was carried out using the quantile method. Each dataset was
saved separately and later combined using the batch normalization method. Gene-specific
batch normalization can be used to combine two or more datasets. If two datasets include
the same tissue or organ then median expression levels for this common tissue/organ are
equalized in the two datasets using this method.

ExAtlas uses the same algorithm for statistical analysis as NIA Array Analysis [13].
Gene expression values are log-transformed and used for ANOVA [13], which is modified
for the multiple hypotheses testing case. Additionally, the false discovery rate (FDR) [2]
is used to assess the significance of gene expression change instead of p-values. Later
meta-analyses were performed on the saved datasets using a random effect method and
lists of differentially-expressed genes were saved as a gene set file. The random-effects
method takes into account the variance of heterogeneity between studies, which is added to
the variance of individual effects. Here, term effect means the log ratio of gene expression
change/difference compared to control or study-wide mean or median.

In a parallel manner, the same raw datasets were analyzed with another software named
Network analyst 3.0 [13]. Upon combining the datasets after normalization, 17,347 matched
feature numbers were recognized, which were then subjected to batch effect adjustment
using Combat. Then, meta-analyses were carried out on the combined dataset using a
random effect model with the p-value set to less than 0.05 and FDR to less than or equal to 2.
While FDR can be a great indicator of the strength of a study, the p-value can be more
useful for statistical power analyses in future studies. The Limma package [14] was used
for the identification of differentially expressed genes (DEGs).

Furthermore, gene expression analyses were performed on all the datasets individually
using Geo2R [3]. Quantile normalization was performed and the Benjamini and Hochberg
false discovery rate method was selected by default for Geo2R analyses because it is the
most commonly used adjustment for microarray data and provides a good balance between
the discovery of statistically significant genes and limitation of false positives.

2.3. Comparative Analyses

The DEGs from both the analyses were then compared and then the common genes
were marked. These genes have the annotation set to official gene symbol, which was
corrected using db2db tool of the Biological Database Network [15]. Furthermore, the gene
expression outputs of all the datasets generated using Geo2R [11] were compared and
the common DEGs were recorded, which were also compared with the output of ExAtlas
and Network Analyst 3.0. The DEGs were then used to construct a heatmap using the
ComplexHeatmappackage of R [16].

2.4. Protein–Protein Interaction Network Construction and Pathway Enrichment Analyses
2.4.1. Protein–Protein Network Interaction

Additionally, DEGs have also been used to study the protein–protein interactions
using the STRING app [17] of Cytoscape [18]. The protein–protein interaction network was
developed in the STRING app. The meaning of the network edges was set to evidence-
based analyses. The second shell interactors were added to the network to ensure or
visualize connections between our target proteins, which were too weak to be found. The
1st shell interactors were the proteins directly associated with the input protein(s) while
the 2nd shell of interactors were the proteins associated with the proteins from the 1st shell.
It can be the case that a 2nd shell protein can be directly connected to an input protein(s),
but it will usually have a weaker association and therefore it would not show up among
the specified number of 1st shell interactors. The 2nd shell proteins are always grey. The
generated network was then analyzed using the Network Analyzer function of Cytoscape.



Appl. Sci. 2021, 11, 3349 4 of 17

2.4.2. Pathway Enrichment Analysis

Furthermore, the biological processes that are involved with the DEGs and the func-
tional enrichment analysis were also studied using the BINGO app [19] of Cytoscape.
A hypergeometric test was carried out using Benjamini and Hochberg FDR correction.
The GO Biological process was selected as the ontology file for executing enrichment
analyses. The generated network was then analyzed using the network analyzer function
of Cytoscape.

Table 1. List of the datasets that have been included in the study.

Sl.
No.

GEO
Accession

Subjec
Sample Analytical Platform Patient Type Reference

Patient Control Total

1 GSE58178 6 6 12 Endometrial
tissue

GPL6947 (Illumina Human
HT-12 v3.0 Expression

Beadchip)
Endometriosis [20]

2 GSE23339 10 9 19 Endometrial
tissue

GPL6102 (Illumina Human-6
v2.0 Expression Beadchip) Endometriosis [21]

3 GSE7305 10 10 20 Endometrial
tissue

GPL570 [HG-U133_Plus_2]
(Affymetrix Human Genome

U133 plus 2.0 Array)
Endometriosis [22]

4 GSE111974 24 24 48 Endometrial
tissue

GPL17077 (Agilent-039494
SurePrint G3 Human GE v2 8 ×

60K Microarray)

Recurrent
Pregnancy Loss [23]

5 GSE26787 10 5 15 Endometrium
GPL570 [HG-U133_Plus_2]

(Affymetrix Human Genome
U133 Plus 2.0 Array)

Recurrent
Pregnancy Loss [24]

GEO—Gene Expression Omnibus.

The overall presentation of the methods used in this study is present in Figure 1.
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3. Results

Five microarray datasets met the inclusion criteria and have been included in our study
namely, GSE58178, GSE23339, GSE7305, GSE111974 and GSE26787 (Table 1). Altogether,
these 5 datasets consisted in 114 samples, of which 54 were controls, and the remaining
60 were patient samples (34 EMS and 26 RPL subjects). Box plots representing the value
distribution of these five datasets, which were constructed using Geo2R. The plot shows
that the log2 expression values are normalized across all the samples of each dataset with
the median line having more or less equal distribution for each dataset (Figure 2).
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3.1. Expression of Up- and Down-Regulated Genes

Meta-analyses of selected microarray datasets using ExAtlas software estimated
207 significant genes using a random-effect model, of which 109 genes were down-regulated
and 98 genes were up-regulated in the patients (both endometriosis and RPL patients
taken together) compared to healthy controls. Figure 3 shows clustered heatmaps of the
five datasets comprising the expression of the up-regulated and down-regulated DEGs.
Based on the expression values of the DEGs, the datasets are clearly clustered into two
groups, namely endometriosis and RPL. It is evident from Figure 3 that both the groups—
endometriosis and RPL—have a similar pattern of expression of genes. In Figure 3, effect
value refers to the log ratio of gene expression change/difference compared to control or
study-wide mean or median.
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NA analysis revealed 685 DEGs, of which 236 were up-regulated and 449 were down-
regulated. When the results of both EA and NA were compared, 120 genes were found to
be common. The top 25 DEGs from the above-mentioned 120 genes are listed in Table 2
based on their fold change (FC) values along with their Entrez ID, log-ratio combined and
FDR value. Interestingly, among all the DEGs, the TWIST2 gene was found to possess the
highest fold change value (3.494), which can be considered as a significant observation
since the same gene has been found to have the highest fold change value in the case
of NA analyses. Among these top 25 DEGs, 60% were down-regulated as evident from
their log-ratio combined value while the rest 40% were up-regulated (Table 2). Thus, the
down-regulated genes overweighed the scale as compared to the up-regulated genes.

Table 2. Top 25 up-regulated and down-regulated genes of the microarray meta-analyses along with their fold change values.

Gene Symbol Entrez ID Log Ratio Combined Fold Change FDR *

1.1. TWIST2 Twist Family Bhlh Transcription Factor 2 −0.5434 3.494 8.79 × 10−11

CA12 Carbonic Anhydrase XII −0.5111 3.244 0.001487
PGBD5 PiggyBac Transposable Element Derived 5 −0.4782 3.007 0.002422

H19 H19, Imprinted Maternally Expressed
Transcript (Non-Protein Coding) −0.4696 2.948 0.000894

SGCD Sarcoglycan Delta 0.4523 2.833 0
ANO4 Anoctamin 4 −0.4227 2.647 2.42 × 10−5

CHN2 Chimerin 2 0.4002 2.513 8.01 × 10−7

MLPH Melanophilin −0.3955 2.486 3.27 ×10−6

PLPP1 Phospholipid Phosphatase 1 −0.3872 2.439 0.004665

NR4A2 Nuclear Receptor Subfamily 4 Group A
Member 2 0.3829 2.415 0.0217

DACH1 Dachshund Family Transcription Factor 1 −0.3827 2.414 3.07 ×10−8

ADAMTS19 ADAM Metallopeptidase With
Thrombospondin Type 1 Motif 19 −0.3787 2.392 0.004645

VLDLR Very Low-Density Lipoprotein Receptor 0.3534 2.256 0.007674
NFIB Nuclear Factor I/B 0.3519 2.249 4.80 × 10−6

PCSK6 Proprotein Convertase Subtilisin/Kexin
Type 6 0.3468 2.223 0.0154

GALNT10 Polypeptide
N-Acetylgalactosaminyltransferase 10 0.334 2.158 0

TGM2 Transglutaminase 2 −0.3236 2.107 0.006722

CREG1 Cellular Repressor Of E1A-Stimulated
Genes 1 0.3113 2.048 0.0175
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Table 2. Cont.

Gene Symbol Entrez ID Log Ratio Combined Fold Change FDR *

NDRG2 NDRG Family Member 2 0.31 2.042 1.71 × 10−5

H4C3 H4 Clustered Histone 3 −0.304 2.014 4.67 × 10−7

RSPO3 R-Spondin 3 −0.3029 2.009 0.004831
TSPAN2 Tetraspanin 2 0.2999 1.995 0.0251

CPXM1 Carboxypeptidase X (M14 Family),
Member 1 −0.2865 1.934 4.13 × 10−6

FBLN7 Fibulin 7 −0.2862 1.933 5.63 × 10−6

HOXD11 Homeobox D11 −0.2822 1.915 0.0406

* FDR: False discovery rate.

In a parallel workflow, all the target GEO datasets were analyzed using Geo2R. The
expression profiles contained genes that were significantly expressed in comparison to the
control. Following this, the expression profiles of all the datasets were overlapped using
the Venn diagram (Figure 4A); it was seen that only 19 significantly overexpressed genes
were common among the five datasets. Interestingly, when these 19 genes were compared
with the differentially expressed genes from EA and NA analysis results (Figure 4B), then,
surprisingly, only a single gene, i.e., TWIST2, was found to be commonly present among
all the three analyses, viz. EA, NA and Geo2R. This outcome shifted our focus towards
the TWIST2 gene and triggered our interest in exploring the biological role of this marker,
especially in the context of human reproductive health. It should be noted here, with respect
to Figure 4B, that all the genes that are considered for comparative analyses between the
three different software-based approaches demonstrated significant fold change in the
patient sample compared to the control.
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3.2. Protein–Protein Interaction (PPI) Network

The PPI network for the DEGs is illustrated in Figure 5. The size of the node indicates
the connection degree value. Centrality is an important parameter in a signaling network
since it helps us to estimate the importance of a node/edge in the flow of information.
It is considered an important parameter while exploring drug targets. The degree of
the nodes can be used as a rough estimate of centrality. The top 20 query nodes, based
on the descending order of their degree of centrality, are listed in Table 3, along with
their respective betweenness centrality, closeness centrality, and the average shortest path
length. A small nuclear ribonucleoprotein F (SNRPF), had the highest degree of node (84)
followed by Catenin Beta 1 (CTNNB1) and Heterogeneous Nuclear Ribonucleoprotein A/B
(HNRNPAB) with their degrees of nodes being 54 and 50, respectively.
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Table 3. List of top 20 interactions from protein–protein analyses using the STRING app.

Name Average Shortest
Path Length

Betweenness
Centrality

Closeness
Centrality

Clustering
Coefficient Degree

SNRPF 2.145228 0.001357 0.466151 0.883247 84
CTNNB1 1.929461 0.065249 0.51828 0.26485 54

HNRNPAB 2.373444 2.87E-05 0.421329 0.980408 50
RBBP4 2.394191 0.002108 0.417678 0.642105 20
WNT2 2.481328 0.000697 0.40301 0.760234 19

PRKAB1 2.489627 0.003624 0.401667 0.79085 18
GNAQ 2.556017 0.009064 0.391234 0.333333 18
GLI2 2.456432 0.002979 0.407095 0.698529 17

RRAGD 2.697095 0.000347 0.370769 0.95 16
MITF 2.448133 0.010795 0.408475 0.549451 14
NES 2.53112 0.000352 0.395082 0.769231 13
TLE4 2.385892 0.000377 0.41913 0.709091 11
RND3 2.53112 0.00226 0.395082 0.490909 11
PRL 2.585062 0.001092 0.386838 0.472727 11

IL2RB 2.742739 0.000934 0.364599 0.644444 10
F2RL2 2.73029 0.003432 0.366261 0.527778 9

TWIST2 2.809129 0.000309 0.355982 0.527778 9
TRIO 2.622407 0.008446 0.381329 0.535714 8
EPS15 2.705394 0.002056 0.369632 0.642857 8

Betweenness centrality is a measure of information flow in a network system. Nodes
with a high betweenness centrality are crucial for a network since they can control infor-
mation flow in a biological network and can be considered as targets for drug discovery.
It is basically defined as the number of shortest paths in a graph that pass through the
node, divided by the total number of shortest paths. Among the top three genes with the
highest degrees of centrality, CTNNB1 has a comparatively higher betweenness centrality
value than the other two, i.e., SNRPF and HNRNPAB. Another important measure that
estimates how fast the flow of information would be through a given node to other nodes
is closeness centrality. Among the three top genes in Table 3, CTNNB1 (0.51828) has the
highest value followed by SNRPF (0.46615) and HNRNPAB (0.42133), respectively. Average
shortest-path length may be defined as the average number of steps along the shortest
paths for all possible pairs of network nodes. It measures how efficiently information or
mass transport occurs on a network. This list has also been topped by CTNNB1 (1.92946)
followed by SNRPF (2.14523) and HNRHPAB (2.37344), respectively.

The colored nodes represent the first shell interactors or the query proteins (120 DEGs)
while the white nodes represent the second shell interactors or the proteins that are not in-
cluded in the input file and have been included for analytical purposes only. The maximum
number of white nodes that was allowed in our PPI analyses was set to 50. In the inset,
the 20 proteins that were listed in Table 3 are represented via protein–protein interactions
without any secondary interactors.

3.3. Pathway Enrichment Analyses

In the GO functional enrichment analyses using the BINGO plugin of Cytoscape
(Figure 6), the yellow nodes are significantly over-represented while the white nodes are
not significantly over-represented and are included only to show the yellow nodes in the
context of the GO hierarchy. The size of a node is proportional to the number of query genes
that are annotated to the corresponding GO category. The top 20 GO categories based on
their respective node sizes, which are significantly over-represented in our study, are listed
in Table 4. Among these significantly over-represented categories, the highest node size
was reported for the biological regulation pathway followed by regulation of biological
processes and regulation of cellular processes. Neighborhood connectivity was found
to be highest for regulation of the signaling pathway, followed by biological regulation,
organ morphogenesis, and skeletal development. It is interesting to find that among the
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first 20 over-represented pathways, CTNNB1 was found to be present in all the pathways.
This shows the importance of this gene in the flow of information in reference to the
pathophysiology of both the diseases. The HNRNPAB protein was found to be involved
in 15 pathways, thereby demonstrating its role in disease occurrence. TWIST2 protein
has also been found to be present in 12 pathways. These observations definitely point
towards the probable involvement of the TWIST2 gene in endometriosis and RPL etiology.
The SNRPF protein was found to only be linked to the cellular component organization
pathway in-spite of having the highest degree of centrality in the case of the protein–protein
interaction network.
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Table 4. List of top 20 significantly overrepresented GO categories derived from BINGO analysis output, based on our data.
The list has been arranged in ascending order of node size.

Name Description
Average
Shortest

Path Length

Betweenness
Centrality

Closeness
Centrality

Neighborhood
Connectivity

Node
Size

No. of
Genes

Adjusted
p-Value

65007 biological
regulation 3.72 0.138077 0.268817 8.333333 16.12452 65 0.00348

50789
regulation of the

biological
process

2.68254 0.263324 0.372781 4.090909 15.87451 63 0.0027

50794 regulation of the
cellular process 2.605263 0.131545 0.383838 4.2 15.74802 62 0.0024
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Table 4. Cont.

Name Description
Average
Shortest

Path Length

Betweenness
Centrality

Closeness
Centrality

Neighborhood
Connectivity

Node
Size

No. of
Genes

Adjusted
p-Value

31323

regulation of the
cellular

metabolic
process

0 0 0 7 12 36 0.0449

23052 signaling 2.625 0.012372 0.380952 5.666667 12 36 0.00789

32502 developmental
process 2.858824 0.112328 0.349794 7 11.6619 34 0.0216

7275
multicellular
organismal

development
3.904762 0.175373 0.256098 5 11.31371 32 0.0216

10468 regulation of
gene expression 1.333333 0.015726 0.75 3 11.13553 31 0.0299

48856
anatomical
structure

development
2.426471 0.066427 0.412121 5.428571 10.77033 29 0.0295

16043
cellular

component
organization

2.625 0.017086 0.380952 5.2 10.77033 29 0.0207

48731 system
development 3.531915 0.30602 0.283133 5.125 10.58301 28 0.0194

23033 signaling
pathway 1.5 0.007868 0.666667 2.5 10.3923 27 0.0113

48869
cellular

developmental
process

2.774194 0.143077 0.360465 6.166667 9.591663 23 0.0143

48523
negative

regulation of
cellular process

3 0.074143 0.333333 5.25 9.380832 22 0.0371

30154 cell
differentiation 2.615385 0.069689 0.382353 4 9.380832 22 0.0184

48513 organ
development 2.827586 0.199668 0.353659 5.375 9.165151 21 0.0482

7166

cell surface
receptor linked

signaling
pathway

1 0.005863 1 1.5 8.944272 20 0.00875

51239

regulation of the
multicellular
organismal

process

1.9375 0.058335 0.516129 4.285714 8.485281 18 0.0083

35466
regulation of

signaling
pathway

0 0 0 11 7.745967 15 0.0299

4. Discussion

A large number of works have been carried out in the past decades to identify genetic
markers for both endometriosis and RPL [25–33]. However, a trustworthy molecular
marker having significant prognostic value has not yet been determined. Moreover, the
lack of potential drug targets is also one of the probable causes for several unsuccessful
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attempts to ameliorate the diseases. Therefore, there is an urgent need for the identification
of potential biomarkers for the two diseases. This study is one of the pioneers in finding a
common potential biomarker for the two diseases for successful diagnostic purposes and
for effective drug delivery systems.

The literature survey provided epidemiological evidence to establish a probable link
between endometriosis and RPL [34]. A recent investigation by Santulli et al. demonstrated
an increased rate of spontaneous miscarriages in endometriosis-affected females [35].
Another interesting study in 2017 claimed mild endometriosis to be a potential risk for
miscarriages [36]. Later in 2019, s study claimed that endometriosis affected the efficacy of
assisted reproductive technology by increasing the risk of miscarriage [37].

More recently, Poli-Neto et al. identified the NOLC1 gene as the most common gene
in the phase I and II endometriosis and affects menstruation, while in phases III and IV,
the genes CDKN1B, DLD, ELOVL5, H2AFZ, IDI1, ME1, MTHFD2, NOLC1, and SOD1 play
a major role. These reports prompted the authors to explore the relationship between
endometriosis and RPL through the identification of any potential biomarkers common
to both the diseases. The present study, in relation to Poli-Neto et al. [38], extends the
identification of CTNNB1, HNRNPAB, SNRPF, and TWIST2 genes as major markers, while
the TWIST2 gene was identified as the most prominent marker for the exploration of
endometriosis and RPL. Although, authors investigated and predicted several parameters
reporting challenges in treating the diseases [38].

It is clearly evident from Figure 3 that both the diseases have similar gene expression
patterns, thereby providing a clear indication for some common markers for the two
diseases. It is also evident from Figure 3 that there exists a clear distinction between the
patient and the control groups of each dataset in terms of the expression profiles of the
genes. This observation partially supports the idea that the above-mentioned 207 genes
may be considered as signatory markers for both EM and RPL. It is clearly evident from
Table 2 that the TWIST2 gene has the highest fold change value from both the EA and NA
analyses. This observation clearly indicates that TWIST2 has a significant role to play as
a potential diagnostic marker for endometriosis-based recurrent miscarriages. TWIST2
has a very important role to play in reproduction. The TWIST2 gene is proved to play
a very significant role in embryo implantation in mice. Embryo implantation is a very
important event for a successful pregnancy. Suppression of the TWIST2 gene impaired the
embryo implantation by suppressing endothelial-mesenchymal transition (EMT) during
embryo implantation [39]. A recent clinical study reported Setleis syndrome in a child with
a novel mutation in the TWIST2 gene [40]. Another study in 2014 by Huang et al. showed
that haploinsufficiency of TWIST2 results in reduced bone formation [41]. Franco et al.
highlighted TWIST2 as a molecular switch during gene transcription [42]. Furthermore,
sequestration of E-proteins by increased TWIST2 levels functions to inhibit muscle-specific
gene activation [42–44]. TWIST2 requires Histone Deacetylases for Myoblast Determination
Protein 1-Myocyte Enhancer Factor 2 inhibition [43]. TWIST2 is also known to regulate
osteoblast differentiation, however its involvement occurs temporally after TWIST1 [41,45].
The transcription factor RUNX2 is considered a master regulator of the osteogenic program
due to its indispensable role in the regulation of most of the genes that give rise to the
mature osteoblast phenotype [41,46]. Both TWIST1 and TWIST2 can also regulate RUNX2
at the protein level by physically interacting with RUNX2 and inhibiting its ability to
bind DNA [41,46]. TWIST2 also acts as an important key negative regulator of myeloid
lineage development, as manifested by marked increases in mature myeloid populations
of macrophages, neutrophils, and basophils in TWIST2-deficient mice [41,47]. Therefore,
on converging our findings with the above-mentioned published investigations, it is
clearly evident that downregulation of the TWIST2 gene may have a very potent role
in early embryonic developmental events, rendering it as a potential clinical marker for
endometriosis based RPL. Another gene, CA XII (Carbonic Anhydrase XII), also has a high
log fold change value, as evident from Table 2. CA XII has been found to have prominent
expression during mouse embryonic development [48]. However, in this article, we did
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not focus on other genes in Table 2 since, on overlapping our intersected gene list from EA
and NA output with the Geo2R results, only the TWIST2 gene was found to be in common.
In other words, only the TWIST2 gene was found to be present in all the three analyses and
therefore was considered to be an important clinical marker.

In the case of protein–protein interaction analyses, the top three genes participating
in the network were SNRPF, CTNNB1 and HNRNPAB, based on their degree of centrality.
Small Nuclear Ribonucleoprotein Polypeptide F (SNRPF) plays role in pre-mRNA splicing
and also as a component of the spliceosomal U1, U2, U4 and U5 small nuclear ribonucleo-
proteins (snRNPs), the building blocks of the spliceosome [49–57]. The SNRPF gene was
found to be downregulated in our study samples and therefore may serve as a valid target
for disease-based research.

CTNNB1 or Catenin Beta 1 is an important downstream component of the canon-
ical Wnt signaling pathway [58–65]. The Wnt signaling pathway is known for its role
in embryonic development, where it actively participates in body axis patterning, cell
fate specification, cell proliferation, and cell migration events [66]. These developmental
processes are essential for proper tissue formations, including bone, heart, and muscles.
CTNNB1 protein is also a part of a protein complex that forms cell–cell junctions in ep-
ithelial and endothelial tissues [67]. Additionally, β-catenin 1 also promotes neurogenesis
by maintaining sympathetic neuroblasts within the cell cycle [68]. Surprisingly, β-catenin
has also been associated with endometrial cancer onset and recurrence [69]. Therefore,
it is evident from the above-mentioned studies that CTNNB1 has an important role in
early developmental pathways and inter- and intracellular recognitions. Interestingly, this
gene was found to be upregulated in our study, rendering it an important marker for
disease-based research and for exploring its role in disease prognosis.

Located on chromosome 5q35.3, HNRNPAB or Heterogeneous Nuclear Ribonucle-
oprotein A/Bis is a member of a subfamily of ubiquitously expressed heterogeneous
nuclear ribonucleoproteins (hnRNPs). They are associated with pre-mRNAs in the nucleus
and appear to influence pre-mRNA processing and other aspects of mRNA metabolism
and transport. HNRNPAB has also been found to be associated with ankyloblepharon-
ectodermal defects–cleft lip/palate syndrome [70–72]. Surprisingly, this gene is also a
member of the preimplantation embryo pathway (WP3527) [73]. In our study, this gene is
downregulated, similar to the SNRPF gene. Considering the above-mentioned facts, it can
be hypothesized that HNRNPAB has a definitive role in disease prognosis via pre-mRNA
processing or preimplantation embryo pathways and can be an essential diagnostic marker
for endometriosis-based RPL.

It is clearly evident from Table 4 that the top 20 pathways of the pathway enrichment
analysis based on the overlapping genes of the EA–NA analyses are mainly concerned
with signaling pathways and developmental biology, thereby indicating the combined
inclination of the genes towards functioning in the arena of developmental signaling
events during embryogenesis. When we tried to explore the involvement of our potential
biomarkers in the biological pathways, it was seen that the SNRPF protein is involved in
the cellular component organization pathway. Interestingly, CTNNB1 is involved in all
20 pathways. HNRNPAB is involved in 15 pathways and TWIST 2 in 13 of the pathways.
CTNNB1, HNRNPAB and TWIST2 are commonly involved in 11 out of 20 major pathways,
that are shown in Supplementary Table S1, while SNRPF and CTNNB1 share only one
pathway in common.

5. Conclusions

In conclusion, our work has identified 120 DEGs in the five profile datasets based on
ExAtlas and Network Analyst results. A handful of biomarkers were found common to
both endometriosis and RPL, and can have a diagnostic role in the case of endometriosis-
based RPL. Notable among these markers are CTNNB1, HNRNPAB, SNRPF and TWIST2.
The 120 DEGs, when compared with the cumulative output of Geo2R software, showed
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only one gene (TWIST2) to be common among the three analytical approaches. Therefore,
our study also claims the TWIST2 gene as a prominent marker of choice for the diseases.

The significantly enriched pathways based on the above-mentioned genes are mainly
centered on signaling and developmental events. These findings could significantly im-
prove our understanding of the cause and underlying molecular events in endometriosis-
based recurrent miscarriages. However, further downstream validation of these markers is
a needed for quantitating their potentiality and establishing their efficacy as a potential
drug target(s).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/app11083349/s1, Table S1: List of top 20 pathways as an outcome of pathway enrichment
analysis using the target genes by BINGO app of Cytoscape.
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